Characterisation of the mechanical behaviour of brain tissue in compression and shear.

نویسندگان

  • M Hrapko
  • J A W van Dommelen
  • G W M Peters
  • J S H M Wismans
چکیده

No validated, generally accepted data set on the mechanical properties of brain tissue exists, not even for small strains. Most of the experimental and methodological issues have previously been addressed for linear shear loading. The objective of this work was to obtain a consistent data set for the mechanical response of brain tissue to either compression or shear. Results for these two deformation modes were obtained from the same samples to reduce the effect of inter-sample variation. Since compression tests are not very common, the influence of several experimental conditions for the compression measurements was analysed in detail. Results with and without initial contact of the sample with the loading plate were compared. The influence of a fluid layer surrounding the sample and the effect of friction were examined and were found to play an important role during compression measurements.To validate the non-linear viscoelastic constitutive model of brain tissue that was developed in Hrapko et al. (Biorheology 43 (2006), 623-636) and has shown to provide a good prediction of the shear response, the model has been implemented in the explicit Finite Element code MADYMO. The model predictions were compared to compression relaxation results up to 15% strain of porcine brain tissue samples. Model simulations with boundary conditions varying within the physical ranges of friction, initial contact and compression rate are used to interpret the compression results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical Analysis of CNS Gray Matter in Tension and Compression

The purpose of this study is to survey cross section changes of the animal brain samples during the tension and compression tests and comparison of the experimental results for three animals: bovine, sheep, and rabbit. A linear elastic theory with considering the necking in tension and barreling in compression has been considered for brain tissue. Bridgman method for tension and cross section u...

متن کامل

Numerical Modeling of the Shear Module of Alginate Micro-Beads under the Ultrasonic Thermal Effect

The mechanical properties of microscopic particles have been a heated research object for it takes the deformation of micro-beads in the microfluidic environment into account. Sufficient knowledge on mechanical properties of micro-beads would lead to better device design and application for cell mechanics, tissue engineering, etc. The physical properties of alginate beads were examined both in ...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Smart Vibration Control of Magnetostrictive Nano-Plate Using Nonlocal Continuum Theory

In this research, a control feedback system is used to study the free vibration response of rectangular plate made of magnetostrictive material (MsM) for the first time. A new trigonometric higher order shear deformation plate theory are utilized and the results of them are compared with two theories in order to clarify their accuracy and errors. Pasternak foundation is selected to modelling of...

متن کامل

Distinct element modelling of the mechanical behaviour of intact rocks using voronoi tessellation model

This paper aims to study the mechanical behaviour and failure mechanism of intact rocks under different loading conditions using the grain based model implemented in the universal distinct element code (UDEC). The grain based numerical model is a powerful tool to investigate complicated micro-structural mechanical behaviour of rocks. In the UDEC grain based model, the intact material is simulat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biorheology

دوره 45 6  شماره 

صفحات  -

تاریخ انتشار 2008